翻訳と辞書 |
Minkowski's first inequality for convex bodies : ウィキペディア英語版 | Minkowski's first inequality for convex bodies In mathematics, Minkowski's first inequality for convex bodies is a geometrical result due to the German mathematician Hermann Minkowski. The inequality is closely related to the Brunn–Minkowski inequality and the isoperimetric inequality. ==Statement of the inequality==
Let ''K'' and ''L'' be two ''n''-dimensional convex bodies in ''n''-dimensional Euclidean space R''n''. Define a quantity ''V''1(''K'', ''L'') by : where ''V'' denotes the ''n''-dimensional Lebesgue measure and + denotes the Minkowski sum. Then : with equality if and only if ''K'' and ''L'' are homothetic, i.e. are equal up to translation and dilation.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Minkowski's first inequality for convex bodies」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|